Линейная алгебра - Definition. Was ist Линейная алгебра
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Линейная алгебра - definition

РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ ЛИНЕЙНЫЕ ПРОСТРАНСТВА И ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ
Линал; Список литературы по линейной алгебре; Алгебра линейная
  • Синие и сиреневые векторы, сохраняющие направление при линейном преобразовании — собственные, красные — нет
  • Схема алгоритма LU-разложения
  • плоскостей]]. Точка пересечения является решением.

ЛИНЕЙНАЯ АЛГЕБРА         
важная в приложениях часть алгебры, содержащая, в частности, теорию линейных алгебраических уравнений, определителей, матриц.
Линейная алгебра         

наиболее важная в приложениях часть алгебры (См. Алгебра). Первым по времени возникновения вопросом, относящимся к Л. а., была теория линейных уравнений (См. Линейное уравнение). Развитие последней привело к созданию теории определителей (См. Определитель), а затем теории матриц (См. Матрица) и связанной с ней теории векторных пространств (См. Векторное пространство) и линейных преобразований (См. Линейное преобразование) в них. В Л. а. входит также теория форм (См. Форма), в частности квадратичных форм (См. Квадратичная форма), и частично теория инвариантов (См. Инварианты) и Тензорное исчисление. Некоторые разделы функционального анализа (См. Функциональный анализ) представляют собой дальнейшее развитие соответствующих вопросов Л. а., связанное с переходом от n-мерных векторных пространств к бесконечномерным линейным пространствам (См. Линейное пространство).

Лит.: Александров П. С., Лекции по аналитической геометрии..., М., 1968; Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970; Фаддеев Д. К., Фаддеева В. Н., Вычислительные методы линейной алгебры, 2 изд., М. - Л., 1963.

Линейная алгебра         
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как так

Wikipedia

Линейная алгебра

Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.

Линейная алгебра обобщена средствами общей алгебры, в частности, современное определение линейного (векторного) пространства опирается исключительно на абстрактные структуры, а многие результаты линейной алгебры обобщены на произвольные модули над кольцом. Более того, методы линейной алгебры широко используются и в других разделах общей алгебры, в частности, нередко применяется такой приём, как сведение абстрактных структур к линейным и изучение их относительно простыми и хорошо проработанными средствами линейной алгебры, так, например, реализуется в теории представлений групп. Функциональный анализ возник как применение методов математического анализа и линейной алгебры к бесконечномерным линейным пространствам, и во многом базируется на методах линейной алгебры и в дальнейших своих обобщениях. Также линейная алгебра нашла широкое применение в многочисленных приложениях (в том числе, в линейном программировании, в эконометрике) и естественных науках (например, в квантовой механике).

Beispiele aus Textkorpus für Линейная алгебра
1. Между прочим, линейная алгебра и аналитическая геометрия - это один предмет, а не два, - с видом знатока уточнил Андрей.
2. Много внимания уделяется математике: матанализ, линейная алгебра, теория вероятностей, моделирование экономических процессов, математические методы исследования экономики и анализа динамических систем, элементы дискретной математики.
Was ist ЛИНЕЙНАЯ АЛГЕБРА - Definition